Beyond ‘look & feel‘ virtualisation

Wolfgang Pree

Software Research Center
cs.uni-salzburg.at/SRC
Contents

- state-of-the-art: virtual somethings
- what does it take to go beyond?
 - sample domain: automation systems
Virtual ‘somethings’
virtual buildings

Walt Disney Concert Hall in Los Angeles

virtual

reality
beyond virtual buildings

- for conceptual purposes only (virtual walk-throughs etc.)
- play no role in the detailed design and construction of the finished structure
beyond virtual buildings

- for conceptual purposes only (virtual walk-throughs etc.)
- play no role in the detailed design and construction of the finished structure
- vision: **represent a building as a full-fledged model** that includes information about the relationships between these objects, so that when one object is changed (e.g., a window is made bigger) any related objects are automatically updated (the wall surrounding it gets thicker).
other domains

- more advanced models than in the construction domain exist already in the automotive and avionics domain
- AUTOSAR might be considered as first step to describe a car’s hardware and software infrastructure
- so far no appropriate models exist for automation systems
What does it take?
representation of domain knowledge

- domain-specific component model
 - how generic or specific?
 - hierarchical composition
 - versioning
 - persistence
 - navigation
 - etc.
- visual representation(s)
Physical aspects of a component

- **Physical View** represents physical and if applicable electrical aspects such as plugs and wires.
Functional View: Represents functional aspects, such as PID controllers and limit monitors. This view is similar to dataflow modeling languages such as Simulink.

Parameter View: Represents variability aspects in terms of name/value pairs, e.g. plug shape descriptions or PID controller values.
sample component definitions

<table>
<thead>
<tr>
<th>Category: Engine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component</td>
</tr>
<tr>
<td>E₁</td>
</tr>
<tr>
<td>E₂</td>
</tr>
</tbody>
</table>
reuse of components by adding properties

<table>
<thead>
<tr>
<th>Category: Engine</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Component</td>
<td>Cylinders</td>
<td>Inertia</td>
<td>N_{max}</td>
<td>Ignition</td>
</tr>
<tr>
<td>E_1</td>
<td>8</td>
<td>1.06 kgm2</td>
<td></td>
<td>Plug 15</td>
</tr>
<tr>
<td>$E_3 \leftarrow E_1$</td>
<td>8</td>
<td>1.05 kgm2</td>
<td>12,000 rpm</td>
<td>Plug 15</td>
</tr>
</tbody>
</table>

- Engine E_3 is defined by copying the definition of engine E_1
- the properties Cylinders and Ignition are inherited and their values are unchanged,
- the property Inertia is inherited but its value was changed, and
- a new property N_{max} is added
compositions, locations and relationships

COMPONENT SampleAutomationSystem

COMPONENTS
 Dyno : APADyno127
 IO: someIO
 CompNode: autPC

END

LOCATIONS
 TestCell
 ControlRoom

END

RELATIONS
 Dyno.BendingBeam.Plug CONNECTS someIO.X26
 Dyno AT TestCell
 ...

END

END